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Introduction - Motivation

An ice jam is a localized accumulation of ice in a 
river

Extensive blockage of the channel flow

According to their mechanics of formation:

(1) Surface ice jams

(2) Frazil ice jams

Ice thickness, river alignment, slope, and velocity

Water levels rise quickly within minutes due to Ice 
Jam Floods (IJFs) compared to open water 
(Beltaos & Prowse, 2001; Mahabir et al., 2006)
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Rokaya et al., (2018)

Pourshahbaz et al., (2023)



Introduction –
Motivation (Cont.)

Ice jam can potentially occur in all 
rivers that form an ice cover 
during the winter (Daly and 
Hopkins, 2001)

Examples:

• Athabasca River, Alberta, 
Canada in April 2020

• Quebec, Canada

Chaudière River in April 2019

Sainte-Anne and Montmorency

River in December 2020

4Source: Jolicoeur, 2018 (YouTube) 



Type of 
ICSs

Piers or 
boulders

Dams and 
weirs

Weir with 
piers

Ice booms Other ICS

Introduction – Motivation (Cont.)
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Credit River ICS
Source: Tuthill, 1995

Sartigan dam
Source: Pourshahbaz 

January 2023

Israel River ICS
Source: Vuyovich
and White 2006

Sainte-Anne River ice 
boom

Source: Pourshahbaz  
October 2021

Sainte-Anne River ICS
Source: Pourshahbaz 

December 2022

• Mitigation measures to reduce the risk of IJFs could be classified into structural and non-
structural measures (Belore et al., 1990; Hicks, 2016)

• Structural measures or Ice Control Structures (ICS) → Construction and design of permanent 
or temporary engineering structures



Introduction -
Motivation (Cont.)
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• Historical studies and Long-
term field observations

Problems→ (1 & 2) 
Instrumental and accessibility 
limitations (3) risk in every field 
monitoring (4) effect of one 
isolated parameter on the 
problem

• Laboratory experiments 

Problems→ Difficulty 
satisfying the scale effect

Assessing ICSs’ performance

Historical studies and Long-
term field observations

Laboratory experiments 

Numerical modeling

Source: Morse et al.,  2006

Source: Lever and Gooch 2005

Source: Billy et al.,  2023



Introduction - Motivation (Cont.)
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Third dimension

Floating wood logs across weir by Lau (2021)

• 1D models → e.g., HECRAS; e.g., Lever & Daly (2003) Cazenovia Creek ICS 

• 2D models → e.g., CRISSP2D;  e.g., Nolin et al. (2017) Matane River ICS

• 3D methods → e.g., Meshless and Mesh based methods 

✓ Highly dynamic interaction of ice and ICS

✓ Vertical velocity fields near ICS

✓ Free – More flexible and accessible

• Not user friendly

✓ User friendly

• Commercial software - Some limitations

✓ Kennedy (1958)→ Jam would respond as 
a “floating granular mass” 

Meshless (Mesh free) methods

Examples: DEM-SPH or DEM-MPS

Mesh based methods

Example: DEM-FVM



OBJECTIVES
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Modeling simple 
system

1) Quantifying river ice processes at 
existing ICSs and evaluating the 
effectiveness of existing structures 

✓ Choosing and instrumenting the 
sites and analyzing the data

2) Assessing the capability and 
performance of numerical methods 
for simulating the ice-structure 
interaction

✓ Simple cases using laboratory 
experiments and comparing
numerical methods results

3) Optimizing the design of existing 
ICSs and identifying and evaluating 
new structural measures

Objectives -
Overview
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Field observation
(Season 1)

Field observation
(Season 2)

Modeling real-life 
system

Optimization 
design using CFD 
calibrated model

Objective 1

New structural 
measures

Objective 2

Master project of 
Mr. Wendkudni Jude Benin

Objective 3



Objectives – Specific 

✓ Evaluating DEM-FVM method (FLOW-3D HYRDO model) for three-
dimensional simulation of ice interaction with structures through

Laboratory experiments

and

Other numerical methods
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METHODOLOGY
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1) Dam break with 4 and 9
blocks (Amaro et al., 
2021)

2) Dam break with 25 blocks 
and interaction with ICS 
(Billy et al., 2023)

3) Channel case with 160
blocks with ICS (Billy et 
al., 2023)

Methodology –
Laboratory experiments
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Source: Billy et al., (2023)Source: Amaro et al., (2021)

Source: Billy et al., (2023)
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Fully Meshless method

Methodology (Cont.) – Numerical methods

Fully Meshless method Mesh-based method

DEM-MPS DEM-FVMDEM-SPH
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Dam break with 4 blocks

Dam break with 9 blocks

Dam break with 25 blocks and ICS

Channel with 160 blocks and ICS

Amaro et al., (2021)

Amaro et al., (2021) Billy et al., (2022)

Billy et al., (2023)

Billy et al., (2023)

Pourshahbaz et al., (2023)

Pourshahbaz et al., (2023)

Pourshahbaz et al., (2023)

Future study



RESULTS

14



• Acceptable wave profiles and block positions 

• t=0.8s, a backward wave was generated

• t=1.6s, the wave reversed 

• After t=1.2s, DEM-FVM mehtod exhibits better block positions 

Results – Dam break with 4 blocks
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Laboratory 
experiments

DEM-MPS

DEM-FVM



Results (Cont.) – Dam break with 4 blocks
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Laboratory 
experiment

DEM-MPS DEM-FVM



• Both numerical models exhibit good agreement

• t=0.8s, a backward wave was generated

• t=1.2s, wave collapses

• After t=1.6s, last series of blocks stuck in DEM-FVM method

Results – Dam break with 9 blocks
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Laboratory 
experiments

DEM-MPS

DEM-FVM



Results (Cont.) – Dam break with 9 blocks
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Laboratory 
experiment

DEM-MPS DEM-FVM



• Numerical wave propagation appears slightly faster in both models

• Flipping of blocks caused by friction with the gate not simulated (t=0.3s)

• The motion of the last row of blocks is accurately simulated by DEM-FVM method 

• t=1.5s, shows reflected wave after hitting the downstream tank face

Results (Cont.) – Dam break with 25 blocks 
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Laboratory 
experiments

DEM-SPH

DEM-FVM



Results (Cont.) – Dam break with 25 blocks

20

Laboratory 
experiment

DEM-FVM

DEM-SPH



Results (Cont.) – Computational time

Numerical method
DEM-FVM 

mesh-based

DEM-MPS

meshless

DEM-SPH

meshless
Software/Developer name FLOW-3D HYDRO MPARS DualSPHysics

Case study 4 and 9 blocks 25 blocks 4 and 9 blocks 25 blocks
CPU Intel(R) Core(TM) i7-10700 @ 2.90GHz Intel(R) Xeon (R) E5 v2 @ 2.80 GHz Intel(R) Core(TM) i7 @ 3.60GHz

CPU cores 8 20 8
GPU ---* ---** NVIDIA GeForce GT 730

CUDA cores ---* ---** 384
Number of cells or particles 1,450,000 1,780,000 1,500,000 1,797,790

Physical time (s) 3.0 3.0 3.0
Total runtime (h) 28 57.2 30 - 60 23.5



Results (Cont.) - Conclusion
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• The DEM-FVM method demonstrated high accuracy and its capability to effectively 
handle dynamic interactions among water, ice, and structures

• DEM-FVM method exhibits accuracy and computational performance that are 
comparable to those of affirmation mesh-free fully Lagrangian methods

• While DEM-FVM method offers a user-friendly interface, its application is limited
unlike open-source methods. 
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Accomplishments
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• Preliminary results from numerical modeling are published in CRIPE 2023 conference with 
the title of “Evaluating a CFD model for three-dimensional simulation of ice structure 
interaction”

Future works 
• Quantified the evaluation and make 

a comparison between DEM-FVM 
method and meshfree methods

• Cases with higher number of blocks 
as FLOW-3D HYDRO limit is 500
objects

• Try different influential factors that 
can have effects on the results, like 
different turbulence models

• Model real life systems 
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THANK YOU!
Questions?
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Du Moulins ICS - January 2022
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Appendix (1)

Used methods and calibrated values

✓ Physical Parameters

Coefficient of Restitution = 0.68

Coefficient of friction = 0.412

Limited to define the material (Young's modulus)

✓ Numerical Parameters

Volume-of-fluid advection = Split Lagrangian method

Order of momentum equation approximation = second order

FAVOR tolerance = 0.0001

Pressure solver type = GMRES algorithm

✓ Grid size (cell size)

1,450,000 cells – 2.8 mm (4 & 9 blocks cases) and 1,780,000 cells – 3.5 mm (25 blocks cases)
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Source: FLOW-3D manual

Source: Pourshahbaz (2023)



• Instruments: 

Water level sensors; Water 
temperature sensors; Acceleration 
Pendant (Anchor ice); Trail cameras

Appendix (2)- Field 
observations
(Winter 2022 – 2023)
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15m

16.7m
2.8m

Ghobrial et al., 2013Pourshahbaz – Nov. 2022 Laganiere & Larouche

Pierre – Nov. 2022

ADCP with Echogram

Velocity field around the ICS + 
Geometry of floating ice Ghobrial et 
al. (2013)

45 Degree – April. 2023

90 Degree – April. 2023
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