





Unintended consequences of water and energy conservation on microbial quality

> Presented by: Emilie Bédard Polytechnique Montréal

July 16th, Hebd'Eau Webinar Series



# Water distribution systems in large buildings

#### Favorable microbial growth conditions :

- ✓ Temperature (20 50 °C)
- ✓ Stagnation
- ✓ Small diameter = ↗ S/V
- ✓ Biofilm and amoeba

✓ Materials
✓ Dead legs
✓ Absence of disinfectant
✓ Renovation & construction

Reduced water consumption can result in: > Longer residence time > Lower flow = less turbulence > Drain plugging > Shorter flush at electronic taps > Prolonged stagnation



Bédard et al. 2018



Examples of unintended consequences of water and energy conservation

Water consumption reduction

- 1) LEED designed school case study
- 2) Electronic faucets
- Energy savings
- 3) Reducing hot water temperature
- 4) Pre-heating hot water

1) Reducing water usage in LEED Designed Buildings – school case study

- LEED design
  - 4,7 L/min during daytime; 12 L/min peak flow
- Built following plans from another school built earlier
- Detection of total coliforms at start of school absence of residual chlorine
  - Boiling advisory
- Implementation of continuous flushing at tap (end of building system)
  - 10L/min  $\rightarrow$  chlorine residual of 0.15 mg Cl<sub>2</sub>/L



# School case study Water Infeed Pipes







**CFU: Colony Forming Unit** 

# School case study Finding the source of contamination





- Reduced water consumption → need to scale down pipe diameters for green buildings
- Small change in water infeed configuration = important
- Separate service lines for fire protection and DW can help reduce pipe diameter and water volume for low DW usage
- Municipal main pipe dimensioned for long term new housing sector – impact on water age







= Mixing zone location



# Electronic faucets Results : Electronic vs manual

| Types of<br>faucet | Nb<br>sampled | Nb<br>positive<br>for P <i>a</i> | % contaminated |        |
|--------------------|---------------|----------------------------------|----------------|--------|
| E faucets          | 92            | 13                               | 14%            | versus |
|                    | 13            | 4                                | 31%            |        |
| Manual             | 90            | 13                               | 14%            |        |
| Pedal<br>activated | 14            | 4                                | 29%            |        |



**Electronic faucet = activation mode** 

Higher prevalence could be caused by <u>other features</u> not exclusive to electronic faucets:

- Shorter flow times → minimal flushing
- Low flowrates → laminar flow
- Frequent on/off cycles → hydraulic flow changes
- Temperature around  $35^{\circ}C \rightarrow$  no hot water after mixing valve
- Materials in mixing valves → plastics, rubber, ...

#### **Examples of operating and design parameters to consider:**

- Connecting pipe material
- Volume of stagnant mixed hot and cold water
- Water characteristics
- Faucet to drain alignment



## 3) Energy Savings:

### **Reducing Temperature**

- Legionella pneumophila:
  - Waterborne pathogen legionellosis
  - Transmission through inhalation or aspiration
  - Loss of culturability around 55°C, some strains can survive above 70°C
  - Hot water system is a known reservoir
- Key measures to control Legionella pneumophila in hot water systems:
  - Maintain elevated water temperatures throughout the system
  - Minimize stagnation through optimal water circulation



Reducing hot water temperature to save on energy?

- 800-bed hospital in Lausanne, Switzerland
- HW temperature reduced to 50°C for energy savings
- 3 years of high positivity for *Lp* despite added onsite disinfection
- Increased temperature to 65°C = reduced *Lp* positivity: *Lp* + 50°C 6

| Lp +    | 50°C      | 65°C     |  |
|---------|-----------|----------|--|
| \A/ator | 73%       | 31%      |  |
| vvaler  | (285/388) | (30/97)  |  |
| Diafilm | 56%       | 33%      |  |
| DIOIIIM | (98/175)  | (63/191) |  |





# 4) Energy Savings: Pre-Heating Hot Water





















#### **Remerciements:**

- L'équipe de la Chaire Industrielle CRSNG en Eau Potable
- Les municipalités, hôpitaux et écoles participantes
- Les partenaires de la Chaire

